\(\int \frac {1}{\sqrt {a+b \cos (c+d x)} \sqrt {\sec (c+d x)}} \, dx\) [754]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 136 \[ \int \frac {1}{\sqrt {a+b \cos (c+d x)} \sqrt {\sec (c+d x)}} \, dx=-\frac {2 \sqrt {a+b} \sqrt {\cos (c+d x)} \csc (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{b d \sqrt {\sec (c+d x)}} \]

[Out]

-2*csc(d*x+c)*EllipticPi((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),(a+b)/b,((-a-b)/(a-b))^(1/2))*(a+
b)^(1/2)*cos(d*x+c)^(1/2)*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/b/d/sec(d*x+c)^(1/2)

Rubi [A] (verified)

Time = 0.17 (sec) , antiderivative size = 136, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.080, Rules used = {4307, 2888} \[ \int \frac {1}{\sqrt {a+b \cos (c+d x)} \sqrt {\sec (c+d x)}} \, dx=-\frac {2 \sqrt {a+b} \sqrt {\cos (c+d x)} \csc (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{b d \sqrt {\sec (c+d x)}} \]

[In]

Int[1/(Sqrt[a + b*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]),x]

[Out]

(-2*Sqrt[a + b]*Sqrt[Cos[c + d*x]]*Csc[c + d*x]*EllipticPi[(a + b)/b, ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a
+ b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x])
)/(a - b)])/(b*d*Sqrt[Sec[c + d*x]])

Rule 2888

Int[Sqrt[(b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Simp[2*b*(Tan
[e + f*x]/(d*f))*Rt[(c + d)/b, 2]*Sqrt[c*((1 + Csc[e + f*x])/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*El
lipticPi[(c + d)/d, ArcSin[Sqrt[c + d*Sin[e + f*x]]/Sqrt[b*Sin[e + f*x]]/Rt[(c + d)/b, 2]], -(c + d)/(c - d)],
 x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2, 0] && PosQ[(c + d)/b]

Rule 4307

Int[(csc[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Dist[(c*Csc[a + b*x])^m*(c*Sin[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Sin[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u,
 x]

Rubi steps \begin{align*} \text {integral}& = \left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {\cos (c+d x)}}{\sqrt {a+b \cos (c+d x)}} \, dx \\ & = -\frac {2 \sqrt {a+b} \sqrt {\cos (c+d x)} \csc (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{b d \sqrt {\sec (c+d x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 1.71 (sec) , antiderivative size = 146, normalized size of antiderivative = 1.07 \[ \int \frac {1}{\sqrt {a+b \cos (c+d x)} \sqrt {\sec (c+d x)}} \, dx=-\frac {2 \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\frac {a+b \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} \left (\operatorname {EllipticF}\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {-a+b}{a+b}\right )-2 \operatorname {EllipticPi}\left (-1,\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {-a+b}{a+b}\right )\right ) \sqrt {1+\sec (c+d x)}}{d \sqrt {\frac {1}{1+\cos (c+d x)}} \sqrt {a+b \cos (c+d x)}} \]

[In]

Integrate[1/(Sqrt[a + b*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]),x]

[Out]

(-2*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*(EllipticF[A
rcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)] - 2*EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)])*Sqr
t[1 + Sec[c + d*x]])/(d*Sqrt[(1 + Cos[c + d*x])^(-1)]*Sqrt[a + b*Cos[c + d*x]])

Maple [A] (verified)

Time = 7.10 (sec) , antiderivative size = 137, normalized size of antiderivative = 1.01

method result size
default \(\frac {2 \sqrt {\frac {a +\cos \left (d x +c \right ) b}{\left (1+\cos \left (d x +c \right )\right ) \left (a +b \right )}}\, \left (F\left (\cot \left (d x +c \right )-\csc \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right )-2 \Pi \left (\cot \left (d x +c \right )-\csc \left (d x +c \right ), -1, \sqrt {-\frac {a -b}{a +b}}\right )\right )}{d \sqrt {a +\cos \left (d x +c \right ) b}\, \sqrt {\sec \left (d x +c \right )}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}\) \(137\)

[In]

int(1/(a+cos(d*x+c)*b)^(1/2)/sec(d*x+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

2/d/(a+cos(d*x+c)*b)^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*(EllipticF(cot(d*x+c)-csc(d*x+c),(-(a
-b)/(a+b))^(1/2))-2*EllipticPi(cot(d*x+c)-csc(d*x+c),-1,(-(a-b)/(a+b))^(1/2)))/sec(d*x+c)^(1/2)/(cos(d*x+c)/(1
+cos(d*x+c)))^(1/2)

Fricas [F]

\[ \int \frac {1}{\sqrt {a+b \cos (c+d x)} \sqrt {\sec (c+d x)}} \, dx=\int { \frac {1}{\sqrt {b \cos \left (d x + c\right ) + a} \sqrt {\sec \left (d x + c\right )}} \,d x } \]

[In]

integrate(1/(a+b*cos(d*x+c))^(1/2)/sec(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

integral(1/(sqrt(b*cos(d*x + c) + a)*sqrt(sec(d*x + c))), x)

Sympy [F]

\[ \int \frac {1}{\sqrt {a+b \cos (c+d x)} \sqrt {\sec (c+d x)}} \, dx=\int \frac {1}{\sqrt {a + b \cos {\left (c + d x \right )}} \sqrt {\sec {\left (c + d x \right )}}}\, dx \]

[In]

integrate(1/(a+b*cos(d*x+c))**(1/2)/sec(d*x+c)**(1/2),x)

[Out]

Integral(1/(sqrt(a + b*cos(c + d*x))*sqrt(sec(c + d*x))), x)

Maxima [F]

\[ \int \frac {1}{\sqrt {a+b \cos (c+d x)} \sqrt {\sec (c+d x)}} \, dx=\int { \frac {1}{\sqrt {b \cos \left (d x + c\right ) + a} \sqrt {\sec \left (d x + c\right )}} \,d x } \]

[In]

integrate(1/(a+b*cos(d*x+c))^(1/2)/sec(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(b*cos(d*x + c) + a)*sqrt(sec(d*x + c))), x)

Giac [F]

\[ \int \frac {1}{\sqrt {a+b \cos (c+d x)} \sqrt {\sec (c+d x)}} \, dx=\int { \frac {1}{\sqrt {b \cos \left (d x + c\right ) + a} \sqrt {\sec \left (d x + c\right )}} \,d x } \]

[In]

integrate(1/(a+b*cos(d*x+c))^(1/2)/sec(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(b*cos(d*x + c) + a)*sqrt(sec(d*x + c))), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\sqrt {a+b \cos (c+d x)} \sqrt {\sec (c+d x)}} \, dx=\int \frac {1}{\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}\,\sqrt {a+b\,\cos \left (c+d\,x\right )}} \,d x \]

[In]

int(1/((1/cos(c + d*x))^(1/2)*(a + b*cos(c + d*x))^(1/2)),x)

[Out]

int(1/((1/cos(c + d*x))^(1/2)*(a + b*cos(c + d*x))^(1/2)), x)